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Abstract.  We prove that any cycle nC , 4n  , with list assignment L, has a k-fold list coloring 

from the given lists if (i) each list contains at least 2k colors and (ii)
 nC  and L satisfy Hall’s 

condition for k-fold list colorings.  Further, 2k in (i) cannot be replaced by 2 1k   if either n is 

odd, or n is even and 2n k  .  In other words, if  4n  , the k-fold Hall number of a cycle nC  

satisfies 
    2
k

nh C k , with equality if n is odd, or n is even and 2n k  .  
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1. Introduction 

A list assignment, or a color supply, for a graph G = (V, E) is an assignment to the 

vertices of G of finite subsets (”lists”) of a set C of colors. A color demand for G is an 

assignment of positive integers to the vertices of G.  If L is a color supply and w is a color 

demand for G,  an (L,w)-coloring of G is a function  which assigns to each v V a subset 

( ) ( )v L v  , with  ( ) ( )v w v  , such that ( ) ( )u v    whenever uv is an edge in G.  When 

w is a constant function, say w = k, we let the value k stand for the function w and we may refer 

to an (L,k)-coloring of G as a k-fold list coloring from L. 

 For any positive integer k the k-fold chromatic number of G, denoted 
( ) ( )k G , is the 

smallest integer m such that there is a k-fold list coloring from the constant color supply 

{1,..., }L m .  The k-fold choice number of G, denoted 
   k

ch G ,  is the smallest integer m such 

that there is a k-fold list coloring from any color supply L satisfying ( )L v m   for all v V . 
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The idea of coloring the vertices of a graph with subsets of a fixed set arguably originated 

with Hilton, Rado, Scott, or Stahl ([14], [17], [19]).  The k-fold coloring of cycles is a particular 

case of edge coloring of multicycles which was studied by Kostochka and Woodall in [15].  It 

turns out that for cycles the k-fold chromatic and choice numbers are the same:  Tuza and Voigt 

in [20] and Gutner and Tarsi in [6] proved that 
   2 2
k

mch C k , 1,2,...m  , 1,2,...k  , and 

Slivnik [18] used measure theoretic methods to show that
   2 1 2 /
k

mch C k k m       ;  these 

values had long been known for ( ) ( )k G .  Our aim here is to give an upper bound for cycles, with 

equality in many cases, on another k-fold list coloring parameter whose definition involves a 

fairly well-known necessary condition for the existence of an (L,w)-coloring of G called Hall’s 

condition.  Our main result will imply the results above about 
 k

ch  as a corollary. 

Given G, L, w, and induced subgraph H of G, and a color x C , let H(x,L) denote the 

subgraph of H induced by  ( ) ( )v V H x L v  , and let   ,H x L  denote the vertex 

independence number of this subgraph.  [If x does not appear on any lists  L v ,  v V H , set 

  , 0H x L  .]  If there is an (L,w)-coloring  of G then the set of vertices  v V H  such 

that  x v  is an independent set of vertices in H(x,L).  Therefore, there can be no more than 

  ,H x L  appearances of x in the color sets for vertices of H.  Since the total number of 

appearances of all symbols in those color sets is
( ) ( )

( ) ( )
x V H v V H

v w v
 

  ,      we have 

(*)      
( )

( ( , )) ( )
x C v V H

H x L w v
 

  . 

If (*) holds for every induced subgraph H of G, then G, L, and w satisfy Hall’s condition.  

(NOTE:  if G, L, and w satisfy Hall’s condition, then (*) holds for every subgraph H of G, 

induced or not.)  Observe that when w = k, a constant, the right hand side of (*) is  k V H . 

Hall’s condition is so named because it was inspired by Hall’s theorem on systems of 

distinct representatives [7], which can be viewed as a list coloring theorem about the special case 

when G is a clique and w = 1 [10].  Further, the improvement of Hall’s theorem, in which the 

requirement that w = 1 is removed, due to Rado [16] and, independently, to Halmos and 

Vaughan [8], can be stated thus:  when G is a clique, Hall’s condition suffices for the existence 

of an (L,w)-coloring of G. 
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For each positive integer k, the k-fold Hall number of G, denoted    k
h G , is the smallest 

integer m ≥ k  such that there is an (L,w)-coloring of G whenever G, L, and k satisfy Hall’s 

condition and │L(v)│ ≥ m for all vV.  Note that 
   k

h G  ≥ k  for every G and k and the Hall – 

Rado – Halmos – Vaughan theorem referred to above implies equality, for every k, when G is a 

clique.  It follows from results in [2], [5] and [13] that:     k
h G k  for  k = 1, 2, … if and only 

if G is the line graph of a forest. 

Clearly     ( ) ( )
k kh G ch G  for all k and G, but    k

h G  < ( ) ( )k G ,     k
h G  = ( ) ( )k G , 

and 
   k

h G  > ( ) ( )k G  are all possible [5].  In [5] it is shown that 
    ( ) ( )
k kh G ch G  if either is 

larger than ( ) ( )k G .  This is an easy result, but it may have its uses, since both ( ) ( )kch G  and 

   k
h G  are difficult to determine. 

For 2k  , the problem of determining the k-fold Hall numbers of trees is solved in [3]: 

if  3r  , 
 

1,( )
k

rh K  = 2 /k k r     ; if  3r  , 
 

1,( )
k

rh K  =  k ; and if T is a tree which is not a star, 

    2
k

h T k .  It follows from the main result in [10] that 
(1) ( ) 1h T   for all trees T. 

 Regarding cycles, since 3 3C K  we have ( )

3( )kh C k  for all 1,2...k  .  In [3], we 

proved that    4

5

3

k k
h C

 
  
 

for all 1,2,....k    From [13] we have (1) ( ) 2nh C   for all n > 3.  Our 

main result is the following: 

Theorem.  For any integers 4n   and 1k  ,  
    2
k

nh C k  , with equality if n is odd, or if n is 

even and 2n k  . 

 For n even the inequality ( ) ( ) 2k

nh C k  follows from ( ) ( )k kh ch  and the previously cited 

result from [6] and [20] that ( ) ( ) 2k

nch C k .  But our proof will be independent of all direct 

proofs of this fact, and that allows us to turn the tables and give a new proof of both old results 

about ( ) ( )k

nch C , n even or odd.  The following is a straightforward consequence of the previously 

mentioned result in [5] that ( )kch = max[
( ) ( ),k kh ], of the well known values of ( ) ( )k

nC , 1k  , 

3n  , and of the theorem. 

Corollary.   For any integers 1k  , 2m  , 
   2 2
k

mch C k  and 
   2 1 2 /
k

mch C k k m      . 
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 In the case of 2 1mC  , the proof of the corollary constitutes a purely combinatorial proof of 

the result proved by Slivnik [18] with the involvement of Lebesgue measure. 

 There is an open problem in [5] that our results bear on :  does 

   
lim

k

k

h G

k
 exist for 

every graph G?  To the two classes of graphs for which the answer was known to be yes – line 

graphs of forests and trees – we can now add:  odd cycles.  It feels strange to wrestle with a list 

coloring problem that is apparently harder for even cycles than for odd cycles!  We hope to 

throw some further light on ( )

2( )k

mh C  when 2 1m k  in a forthcoming paper. 

2. Proof of the Theorem 

 The proof that ( ) ( ) 2k

nh C k   will use the following, a special case of the main result in 

[2], first proved in [1].   

Path Lemma.   For any path P with color demand w and color supply L, P is (L,w)-colorable 

if and only if P, L, and w satisfy Hall’s condition.     

 It may be worth mentioning that in [1] there is an efficient algorithm for either coloring P 

or discovering that Hall’s condition is not satisfied. 

 Our strategy for proving that ( ) ( ) 2k

nh C k  will use the Path Lemma thus: we will show 

that when nC , L and k satisfy Hall’s condition and   2L v k  for all ( )nv V C , then for some 

( )nv V C  there is a k-set  S L v  such that if 'L is defined on the path nC v  by removing all 

of the elements of S from the  lists on the neighbors of v, and otherwise putting 'L = L, then 

nC v , 'L and k satisfy Hall’s condition. Coloring v with S and putting this with an ( 'L , k)-

coloring of nC v  then produces an (L,k)-coloring of nC . 

 It will be useful to note as in [1] that for any list assignment L to nC  and any x C , we 

may as well suppose that ( , )nC x L  is connected.   The reason:  for any graph G, color supply L, 

and color demand w, if G(x,L) is disconnected for some x in C, we can make a new list 

assignment L̂ by replacing x on the lists on each component of G(x,L) by a new symbol, so that 

x’s replacements on those components are different from each other and from all the other 

symbols appearing on lists on G.  It is straightforward to see that G, L, and w satisfy Hall’s 
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condition if an only if G, L̂ , and w do, and that there is an (L,w)-coloring of G if and only if 

there is an ( L̂ w)-coloring of G. 

Given a vertex v of nG C  and a color  x L v , we say that x is bad at v if and only if 

no maximum independent set of vertices of G(x,L) contains v.  Under the assumption that G(x,L) 

is connected, this means that G(x,L) is a path of odd order and v is one of the even numbered 

vertices, if we count along the path with the count starting with the number 1 (since the path has 

odd order, you can start from either end).   

For each vertex  v V G  we partition its supply, L(v), as follows: 

 B(v) = {xL(v): x is bad at v} 

 O(v) = {xL(v): G(x,L) is a path of odd order}\B(v) 

 E(v) = L(v)\(B(v)O(v)). 

If G(x,L) is simply a vertex v then xO(v).  If G(x,L) = G then  x E v . We now assume that G, 

L and k satisfy Hall’s condition, and that |L(v)|  2k for all vV(G), and set about showing that 

there is an (L,k)-coloring, by the strategy described earlier. 

 If  x B v  then  x O u  for each neighbor u of v.  Therefore, if ( ) ( )O v E v k   then 

( ) ( )O u B v k   for each neighbor u of v, since   2L u k  for every vertex.  It follows that 

there is a vertex 0v  such that 0 0( ) ( )O v E v k  .  Let the vertices of G be 0 1 1, , , nv v v  , one way 

or the other around the cycle. 

  Let 0 0 0( ) ( )X O v E v   be of size k and such that 0 0( )X O v  is as large as possible.  We 

intend to    color 0v   with 0X .  Define 'L  on G- 0v by  

0( ) \         if 1, 1
'( )

( )            otherwise.

i

i

i

L v X i n
L v

L v

 
 


 

We shall finish the proof that ( ) ( ) 2k

nh C k by showing that G- 0v , 'L  and k satisfy Hall’s 

condition.   

 Let H be an induced subgraph of G- 0v .  To verify (*) for H, 'L  and w = k, it 

suffices to verify it for every connected component of H, so we may as well consider H to be 

connected; that is, H is a path. If H is a single vertex iv , ( ( , ' ) ) | ' ( ) |i

x C

H x L L v


 , which is 

either at least 2k, if 1 1,i n    or is 0| ( ) \ | 2iL v X k k k   , if  1, 1 .i n    In any case, 
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( ( , ')) | ( ) |
x C

H x L k k V H


  , so (*) holds and we assume that   1V H  .  If H is a path 

containing neither 1v  nor 1nv   then (*) holds because 'L L  on V(H) and G, L, and k are 

assumed to satisfy Hall’s condition.  Therefore, we need only consider the case that H is a path 

containing either 1v  or 1nv  , or both.   

Suppose that H contains 1v  but not 1nv  .  (Disposing of this case will also take care of the 

case when H contains 1nv   but not 1v .)  Then, using self-explanatory notation for paths, 

1 2( , , , )tH v v v  , for some t, 1 1t n   .  Since 2 2, , ,t t t rv v v  , where 
1

2

t
r

 
  
 

,  are 

independent vertices in H, we have that 

( ( , '))
x C

H x L



 



  
2

0

| '( ) |
r

t i

i

L v 



  

 
2        if  is odd

2( 1)        if  is even

rk k t

r k t





 

= tk = k|V(H)|. 

 Now suppose that 1 2 1( , , , )nH v v v   = 0G v . 

If 0\x C X  then ( ( , ')) ( ( , ))H x L H x L  .  Also, the definition of 0( )O v  implies that, 

for every 0( )x O v , ( ( , ')) ( ( , )) ( ( , )) 1H x L H x L G x L     .  If | 0( )O v |  k then 0X  is a 

subset of 0( )O v  so we have that ( ( , ')) ( ( , ))H x L H x L  for all x, and we are done by the 

assumption that G, L and k satisfy Hall’s condition.   

Therefore, we may assume that 0| ( ) |O v k  and, consequently, by the choice of 0X , that 

0 0( )O v X .  As noted above, if 0( )x O v , ( ( , )) ( ( , )) ( ( , )) 1H x L H x L G x L      .  For 

0 0 0\ ( ) ( )x X O v E v  , we also have that ( ( , )) ( ( , )) 1H x L G x L    , by the definition of 

0( )E v  and of L .  Thus ( ( , )) ( ( , )) 1H x L G x L     for all 0x X .  If 0\x C X  then either 

0( )x L v , in which case ( ( , )) ( ( , ))H x L G x L   , or 0 0 0( ) ( ( ) \ )x B v E v X  , in which case 

( ( , )) ( ( , ))H x L G x L   , as well.  Consequently,  

0 0\

( ( , )) ( ( , )) ( ( , ))
x C x X x C X

H x L H x L H x L  
  

       

0

( ( , ))
x X

G x L


 
0

0

\

| | ( ( , ))
x C X

X G x L
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( ( , )) | ( ) |
x C

G x L k kn k k V H


     . 

This completes the proof ( ) ( ) 2k

nh C k . 

 Next we show that ( )

2 1( ) 2k

mh C k   for all 1k   and 2m  by exhibiting a color supply L 

satisfying Hall’s condition with 2 1mG C   and w k , and   2 1L v k   for all v, such that 

there is no (L,k)-coloring of G. Let 0 1 2, , , mv v v  be the vertices of G around the cycle.  For any 

positive integer z, let [z]={1, 2, …, z} and define 0( ) [2 1]L v k  , 1 2( ) ( ) [2 ]mL v L v k  , and 

( ) [2 ] (2 1)jL v k k    for 2 2 1j m   , where [z]+x = {1+x, 2+x, …, z+x}.   

 In any (L,k)-coloring of G,  because the lists ( )jL v , 2 2 1j m   , have only 2k elements, 

color 2k would have to appear on either 2v  or 2 1mv  .  On the other hand, in every (L,k)-coloring of 

 1 0 2, , mv v v  color 2k must be used on both 
1

v , and 2mv .  Therefore, no such coloring of the cycle 

exists.  It is straightforward to verify that there is an (L,k)-coloring of G-v  for every v V ; 

therefore (*) holds for every proper induced subgraph H of G.  Thus we need only to verify (*) 

for H =G. The following are easily seen: for [2 1]x k  , ( ( , ))G x L =2; ( (2 , ))G k L m   and for 

[2 1] 2x k k   , ( ( , )) 1G x L m   .  Therefore, 

          ( ( , )) 2 2 1 1 2 1 2 1 1 2 1
x C

G x L k m m k k m k k m k V G


             .  It may 

be worth pointing out that the list assignment given to show that ( )

2 1( ) 2k

mh C k   does not do the 

same job for 2mC , 2m  , for the reason that there is an (L,k)-coloring of 2mC , if L is defined as 

above. 

 To finish the proof of the Theorem, we suppose that 
2

2

k
m

 
  
 

, so that 2 1n m k   , 

and we give a list assignment L to 2mG C  such that G, L, and k satisfy Hall’s condition, and 

  2 1L v k   for all v V , yet there is no (L,k)-coloring of G. Let the vertices of G be 

0 1 2 1, , , mv v v  , around the cycle. 

 

Case 1. m k : set 0( ) [2 ]L v k , ( ) [2 1]jL v k j   , 1 2 3j m   , 2 2( ) [2 ] (2 3)mL v k m     

and 

        2 1( ) 1,3,5,..., 2 3 2 1,2 3,2 5,..., 2 2 3 1 2 2 3mL v m k k k k m k k m              .   
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Case 2. 1m k   : set 0( ) [2 ]L v k , ( ) [2 1]jL v k j   , 1 2 1j k   , ( ) [2 ] (2 1)jL v k k   , 

2 2 2k j m   , and 

        2 1( ) 1,3,5,..., 2 1 2 1,2 3,2 5,..., 4 1 1 4 1mL v k k k k k k k            .   

 First note that all lists have size at least 2 1k  .  The only unobvious case is that of 

2 1( )mL v   in Case 1, where we have 

 2 1 1 1 1 2 3 2 3 2 1mL v m m k m k k k k                . 

 Next we shall see that there is no (L,k)-coloring of G.  If  were such a coloring, then, 

because 
1| ( ) ( ) | 2j jL v L v k  , 0 2 3j m   , it must be that 

1( ) ( ) \ ( )j j jv L v v   , 

0 2 3j m   , and 
1( ) ( ) \ ( )j j jv L v v   , 1 2 2j m   .   Related observations: for 

0 2 4j m    in Case 1 and for 0 2 2j k    in Case 2, it must be that 1 ( )jj v  .  

Otherwise, 
1( ) ( )j jv L v   and we would have 

1 1| ( ) | | ( ) \ ( ) | 2 1 1j j jv L v v k k k        .  

By the same argument, slightly modified, 2 32 2 ( )mm v    in Case 1 and 2 12 ( )kk v   in Case 

2.  Similarly, for 2 2 2j m    in Case 1 and for 2 2j k   in Case 2, it must be that 

2 1 ( )jk j v   . 

 Using these observations with 
1( ) ( ) \ ( )j j jv L v v    for various values of j, it can be 

seen that, in Case 1, 0( )v  must contain 1, 3, …, 2m-3, and 2 2( )mv   must contain 

2 2 3,2 2 5,...,2 1m k m k k     .  But this leaves only k-1 colors in 2 1( )mL v   eligible for 

2 1( )mv  .  So there is no such   in Case 1.  In Case 2, something similar happens: 0( )v  must 

contain 1, 3, …, 2k-1, and 2 2( )mv   must contain 4 1k  , 4 3k  , …, 2 1k  ,  which leaves only 

1k   elements in 2 1( )mL v   eligible for 2 1( )mv  . 

 To show that G, L, and w k  satisfy Hall’s condition is straightforward, but enough of a 

chore that we shall bear some of the burden here.  First we show that G-v has an (L,k)-coloring 

for each v V .  From the discussion of the non-existence of  , above, it is clear that this holds 

for 2 1mv v  , in both cases, but for other v V  there is work to be done.  We start by explicitly 

defining a “near” k-fold coloring of G from the list assignment L, the very   whose values on 

0 1 2 2, , , mv v v   are forced in Case 2 and partially in Case 1. For each v V , let odd(v) and 

even(v) denote respectively the subsets of odd and even elements in L(v), and for 0 2 2j m   , 
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( ) if  is even

( )
( ) if  is odd 

j

j

j

odd v j
v

even v j



 


; further, 
2 1

[ 1] (2 2 3) in Case 1
( )

[ 1] (4 1)  in Case 2.
m

k k m
v

k k
 

   
 

  
 

 

 If there were any doubt in the reader’s mind about 2 1mG v  , then the reader could 

observe that   restricted to 2 1\{ }mV v   is an (L,k)-coloring of that graph.  Further   can be 

modified to an (L,k)-coloring of 0G v  by adding 1 to 2 1( )mv  , and to an (L,k)-coloring of 

2 2mG v   by adding 2 2 3k m   in Case 1, and 4 1k   in Case 2, to 2 1( )mv  .  For [2 3]i m   

we modify   to an (L,k)-coloring *  on iG v  as follows:  

 In Case 1, if i is even, then for 0 j i  , 

( ( ) \{ 1}) { }if  is even
*( )

( ( ) \{ }) { 1}if  is odd,

j

j

j

v i i j
v

v i i j






 
 

 
  

for 2 2i j m   , *( ) ( )j jv v  , and 2 1 2 1*( ) ( ) { 1}m mv v i     ; if i is odd then for 

0 j i  , 
( ( ) \{ 1}) { }if  is odd   

*( )
( ( ) \{ }) { 1} if  is even,

j

j

j

v i i j
v

v i i j






 
 

 
 

for 2 2i j m   , *( ) ( )j jv v  , and 2 1 2 1*( ) ( ) { }m mv v i    .   

 In Case 2, for [2 1]i k  , if i is even then for 0 j i  , 

( ( ) \{ 1}) { }if  is even
*( )

( ( ) \{ }) { 1}if  is odd,

j

j

j

v i i j
v

v i i j






 
 

 
 

for 2 2i j m   , *( ) ( )j jv v  , and 2 1 2 1*( ) ( ) { 1}m mv v i     ; if i is odd then for 

0 j i  , 
( ( ) \{ 1}) { }if  is odd   

*( )
( ( ) \{ }) { 1} if  is even,

j

j

j

v i i j
v

v i i j






 
 

 
 

for 2 2i j m   , *( ) ( )j jv v  , and 2 1 2 1*( ) ( ) { }m mv v i    .  If 2 2 2k i m   , for 

0 j i  , set *( ) ( )j jv v  , and for 2 2i j m   , 

( ( ) \{4 2}) {4 1}if  is odd   
*( )

( ( ) \{4 1}) {4 2} if  is even,

j

j

j

v k k j
v

v k k j






  
 

  
 

and 2 1 2 1*( ) ( ) {4 1}m mv v k     . 
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 The proof will be complete when we verify that (*) holds for G, that is 

( ( , )) 2
x C

G x L nk mk


  .   

Case 1. For 1 2 3x m   , G(x,L) is a path of order 1x   if x is odd and x if x is even, so 

( ( , )) / 2G x L x     . For 2 2 2m x k   , 2 1( , ) mG x L G v   , so ( ( , ))G x L m  .  For 

2 1 2 2 3k x m k     , G(x,L) is a path of order 2 2 2m k x    if x is even, and of order 

2 2 1m k x    if x is odd, so ( ( , )) 1
2

x
G x L m k

 
     

 
.  Finally, for 

[ 1] (2 2 3)x k k m     , ( ( , )) 1G x L  .  Therefore,  

2 3 2 2 2 3

1 2 2 2 1

2 2

( ( , )) / 2 ( 1 / 2 ) ( 1)

( 1) (2 2 3) ( 1)(2 3) (( 1)( 2) ) 1

2 1 2 .

m k m k

x C x x m x k

G x L x m m k x k

m m k m m k m m k m k k k

mk k m mk kn


  

     

             

                

     

   

 

Case 2. For 1 2 1x k   , G(x,L) is a path of order 1x   if x is odd and x if x is even; thus 

( ( , )) / 2G x L x     .  2 1(2 , ) mG k L G v   , so ( (2 , ))G k L m  .  For 2x k r  , 1 2 2r k   , 

G(x,L) is a path of order 2 2m r   if r (and thus x) is even, and of order 2m-1-r if r (and thus x) 

is odd; ( ( , )) 1
2

r
G x L m

 
    

 
.  Clearly ( (4 1, ))G k L m k     and ( ( , )) 1G x L   for 

[ 1] (4 1)x k k    .  Therefore,  

2 1 2 2

1 1

2 2

( ( , )) / 2 ( 1 / 2 ) ( ) ( 1)

( 1)(2 2) ( 1) ( 1)

2 .

k k

x C x r

G x L x m m r m k k

k m m k k m

mk kn
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